Solve for f
\left\{\begin{matrix}f=\frac{xz}{y\left(x+1\right)}\text{, }&x\neq -1\text{ and }y\neq 0\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&\left(x=-1\text{ or }y=0\right)\text{ and }x\neq 0\text{ and }z=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{fy}{z-fy}\text{, }&f\neq 0\text{ and }y\neq 0\text{ and }z\neq fy\\x\neq 0\text{, }&\left(y=0\text{ or }f=0\right)\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
zx=xfy+fy
Multiply both sides of the equation by x.
xfy+fy=zx
Swap sides so that all variable terms are on the left hand side.
\left(xy+y\right)f=zx
Combine all terms containing f.
\left(xy+y\right)f=xz
The equation is in standard form.
\frac{\left(xy+y\right)f}{xy+y}=\frac{xz}{xy+y}
Divide both sides by xy+y.
f=\frac{xz}{xy+y}
Dividing by xy+y undoes the multiplication by xy+y.
f=\frac{xz}{y\left(x+1\right)}
Divide zx by xy+y.
zx=xfy+fy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
zx-xfy=fy
Subtract xfy from both sides.
-fxy+xz=fy
Reorder the terms.
\left(-fy+z\right)x=fy
Combine all terms containing x.
\left(z-fy\right)x=fy
The equation is in standard form.
\frac{\left(z-fy\right)x}{z-fy}=\frac{fy}{z-fy}
Divide both sides by z-yf.
x=\frac{fy}{z-fy}
Dividing by z-yf undoes the multiplication by z-yf.
x=\frac{fy}{z-fy}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}