Solve for v (complex solution)
\left\{\begin{matrix}v=-\frac{-xt^{2}+2y-2z}{2t\sin(x)}\text{, }&t\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\v\in \mathrm{C}\text{, }&\left(z=-\frac{xt^{2}}{2}+y\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\right)\text{ or }\left(z=y\text{ and }t=0\right)\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=-\frac{-xt^{2}+2y-2z}{2t\sin(x)}\text{, }&t\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\v\in \mathrm{R}\text{, }&\left(y=z\text{ and }t=0\right)\text{ or }\left(y=\frac{xt^{2}}{2}+z\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\right)\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{\sqrt{2\left(-v^{2}\cos(2x)+4xy-4xz+v^{2}\right)}-2v\sin(x)}{2x}\text{; }t=-\frac{-\sqrt{2\left(-v^{2}\cos(2x)+4xy-4xz+v^{2}\right)}-2v\sin(x)}{2x}\text{, }&x\neq 0\\t\in \mathrm{C}\text{, }&x=0\text{ and }z=y\end{matrix}\right.
Quiz
Trigonometry
5 problems similar to:
z = v \cdot \sin ( x ) \cdot t - \frac { x } { 2 } t ^ { 2 } + y
Share
Copied to clipboard
z=v\sin(x)t-\frac{xt^{2}}{2}+y
Express \frac{x}{2}t^{2} as a single fraction.
v\sin(x)t-\frac{xt^{2}}{2}+y=z
Swap sides so that all variable terms are on the left hand side.
v\sin(x)t+y=z+\frac{xt^{2}}{2}
Add \frac{xt^{2}}{2} to both sides.
v\sin(x)t=z+\frac{xt^{2}}{2}-y
Subtract y from both sides.
2v\sin(x)t=2z+xt^{2}-2y
Multiply both sides of the equation by 2.
2t\sin(x)v=xt^{2}-2y+2z
The equation is in standard form.
\frac{2t\sin(x)v}{2t\sin(x)}=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Divide both sides by 2\sin(x)t.
v=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Dividing by 2\sin(x)t undoes the multiplication by 2\sin(x)t.
z=v\sin(x)t-\frac{xt^{2}}{2}+y
Express \frac{x}{2}t^{2} as a single fraction.
v\sin(x)t-\frac{xt^{2}}{2}+y=z
Swap sides so that all variable terms are on the left hand side.
v\sin(x)t+y=z+\frac{xt^{2}}{2}
Add \frac{xt^{2}}{2} to both sides.
v\sin(x)t=z+\frac{xt^{2}}{2}-y
Subtract y from both sides.
2v\sin(x)t=2z+xt^{2}-2y
Multiply both sides of the equation by 2.
2t\sin(x)v=xt^{2}-2y+2z
The equation is in standard form.
\frac{2t\sin(x)v}{2t\sin(x)}=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Divide both sides by 2\sin(x)t.
v=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Dividing by 2\sin(x)t undoes the multiplication by 2\sin(x)t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}