Skip to main content
Solve for v (complex solution)
Tick mark Image
Solve for v
Tick mark Image
Solve for t (complex solution)
Tick mark Image

Share

z=v\sin(x)t-\frac{xt^{2}}{2}+y
Express \frac{x}{2}t^{2} as a single fraction.
v\sin(x)t-\frac{xt^{2}}{2}+y=z
Swap sides so that all variable terms are on the left hand side.
v\sin(x)t+y=z+\frac{xt^{2}}{2}
Add \frac{xt^{2}}{2} to both sides.
v\sin(x)t=z+\frac{xt^{2}}{2}-y
Subtract y from both sides.
2v\sin(x)t=2z+xt^{2}-2y
Multiply both sides of the equation by 2.
2t\sin(x)v=xt^{2}-2y+2z
The equation is in standard form.
\frac{2t\sin(x)v}{2t\sin(x)}=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Divide both sides by 2\sin(x)t.
v=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Dividing by 2\sin(x)t undoes the multiplication by 2\sin(x)t.
z=v\sin(x)t-\frac{xt^{2}}{2}+y
Express \frac{x}{2}t^{2} as a single fraction.
v\sin(x)t-\frac{xt^{2}}{2}+y=z
Swap sides so that all variable terms are on the left hand side.
v\sin(x)t+y=z+\frac{xt^{2}}{2}
Add \frac{xt^{2}}{2} to both sides.
v\sin(x)t=z+\frac{xt^{2}}{2}-y
Subtract y from both sides.
2v\sin(x)t=2z+xt^{2}-2y
Multiply both sides of the equation by 2.
2t\sin(x)v=xt^{2}-2y+2z
The equation is in standard form.
\frac{2t\sin(x)v}{2t\sin(x)}=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Divide both sides by 2\sin(x)t.
v=\frac{xt^{2}-2y+2z}{2t\sin(x)}
Dividing by 2\sin(x)t undoes the multiplication by 2\sin(x)t.