Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=i-\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
z=i-\frac{1\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=i-\frac{1\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=i-\frac{1+i}{2}
Multiply 1 and 1+i to get 1+i.
z=i+\left(-\frac{1}{2}-\frac{1}{2}i\right)
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
z=-\frac{1}{2}+\left(1-\frac{1}{2}\right)i
Combine the real and imaginary parts in numbers i and -\frac{1}{2}-\frac{1}{2}i.
z=-\frac{1}{2}+\frac{1}{2}i
Add 1 to -\frac{1}{2}.