Solve for f (complex solution)
f=\frac{z^{2}}{xy+z^{2}}
z\neq -i\sqrt{x}\sqrt{y}\text{ and }z\neq i\sqrt{x}\sqrt{y}\text{ and }z\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\left(f-1\right)z^{2}}{fy}\text{, }&f\neq 0\text{ and }y\neq 0\text{ and }z\neq 0\\x\in \mathrm{C}\text{, }&f=1\text{ and }z\neq 0\text{ and }y=0\end{matrix}\right.
Solve for f
f=\frac{z^{2}}{xy+z^{2}}
\left(x>0\text{ and }y>0\text{ and }z\neq 0\right)\text{ or }\left(x<0\text{ and }y<0\text{ and }z\neq 0\right)\text{ or }\left(|z|\neq \sqrt{-xy}\text{ and }z\neq 0\right)
Solve for x
\left\{\begin{matrix}x=-\frac{\left(f-1\right)z^{2}}{fy}\text{, }&f\neq 0\text{ and }y\neq 0\text{ and }z\neq 0\\x\in \mathrm{R}\text{, }&f=1\text{ and }z\neq 0\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
zz=f\left(\frac{yx}{z}+z\right)z
Multiply both sides of the equation by z.
z^{2}=f\left(\frac{yx}{z}+z\right)z
Multiply z and z to get z^{2}.
z^{2}=f\left(\frac{yx}{z}+\frac{zz}{z}\right)z
To add or subtract expressions, expand them to make their denominators the same. Multiply z times \frac{z}{z}.
z^{2}=f\times \frac{yx+zz}{z}z
Since \frac{yx}{z} and \frac{zz}{z} have the same denominator, add them by adding their numerators.
z^{2}=f\times \frac{yx+z^{2}}{z}z
Do the multiplications in yx+zz.
z^{2}=\frac{f\left(yx+z^{2}\right)}{z}z
Express f\times \frac{yx+z^{2}}{z} as a single fraction.
z^{2}=\frac{f\left(yx+z^{2}\right)z}{z}
Express \frac{f\left(yx+z^{2}\right)}{z}z as a single fraction.
z^{2}=f\left(xy+z^{2}\right)
Cancel out z in both numerator and denominator.
z^{2}=fxy+fz^{2}
Use the distributive property to multiply f by xy+z^{2}.
fxy+fz^{2}=z^{2}
Swap sides so that all variable terms are on the left hand side.
\left(xy+z^{2}\right)f=z^{2}
Combine all terms containing f.
\frac{\left(xy+z^{2}\right)f}{xy+z^{2}}=\frac{z^{2}}{xy+z^{2}}
Divide both sides by yx+z^{2}.
f=\frac{z^{2}}{xy+z^{2}}
Dividing by yx+z^{2} undoes the multiplication by yx+z^{2}.
zz=f\left(\frac{yx}{z}+z\right)z
Multiply both sides of the equation by z.
z^{2}=f\left(\frac{yx}{z}+z\right)z
Multiply z and z to get z^{2}.
z^{2}=f\left(\frac{yx}{z}+\frac{zz}{z}\right)z
To add or subtract expressions, expand them to make their denominators the same. Multiply z times \frac{z}{z}.
z^{2}=f\times \frac{yx+zz}{z}z
Since \frac{yx}{z} and \frac{zz}{z} have the same denominator, add them by adding their numerators.
z^{2}=f\times \frac{yx+z^{2}}{z}z
Do the multiplications in yx+zz.
z^{2}=\frac{f\left(yx+z^{2}\right)}{z}z
Express f\times \frac{yx+z^{2}}{z} as a single fraction.
z^{2}=\frac{f\left(yx+z^{2}\right)z}{z}
Express \frac{f\left(yx+z^{2}\right)}{z}z as a single fraction.
z^{2}=f\left(xy+z^{2}\right)
Cancel out z in both numerator and denominator.
z^{2}=fxy+fz^{2}
Use the distributive property to multiply f by xy+z^{2}.
fxy+fz^{2}=z^{2}
Swap sides so that all variable terms are on the left hand side.
fxy=z^{2}-fz^{2}
Subtract fz^{2} from both sides.
fxy=-fz^{2}+z^{2}
Reorder the terms.
fyx=z^{2}-fz^{2}
The equation is in standard form.
\frac{fyx}{fy}=\frac{\left(1-f\right)z^{2}}{fy}
Divide both sides by fy.
x=\frac{\left(1-f\right)z^{2}}{fy}
Dividing by fy undoes the multiplication by fy.
zz=f\left(\frac{yx}{z}+z\right)z
Multiply both sides of the equation by z.
z^{2}=f\left(\frac{yx}{z}+z\right)z
Multiply z and z to get z^{2}.
z^{2}=f\left(\frac{yx}{z}+\frac{zz}{z}\right)z
To add or subtract expressions, expand them to make their denominators the same. Multiply z times \frac{z}{z}.
z^{2}=f\times \frac{yx+zz}{z}z
Since \frac{yx}{z} and \frac{zz}{z} have the same denominator, add them by adding their numerators.
z^{2}=f\times \frac{yx+z^{2}}{z}z
Do the multiplications in yx+zz.
z^{2}=\frac{f\left(yx+z^{2}\right)}{z}z
Express f\times \frac{yx+z^{2}}{z} as a single fraction.
z^{2}=\frac{f\left(yx+z^{2}\right)z}{z}
Express \frac{f\left(yx+z^{2}\right)}{z}z as a single fraction.
z^{2}=f\left(xy+z^{2}\right)
Cancel out z in both numerator and denominator.
z^{2}=fxy+fz^{2}
Use the distributive property to multiply f by xy+z^{2}.
fxy+fz^{2}=z^{2}
Swap sides so that all variable terms are on the left hand side.
\left(xy+z^{2}\right)f=z^{2}
Combine all terms containing f.
\frac{\left(xy+z^{2}\right)f}{xy+z^{2}}=\frac{z^{2}}{xy+z^{2}}
Divide both sides by yx+z^{2}.
f=\frac{z^{2}}{xy+z^{2}}
Dividing by yx+z^{2} undoes the multiplication by yx+z^{2}.
zz=f\left(\frac{yx}{z}+z\right)z
Multiply both sides of the equation by z.
z^{2}=f\left(\frac{yx}{z}+z\right)z
Multiply z and z to get z^{2}.
z^{2}=f\left(\frac{yx}{z}+\frac{zz}{z}\right)z
To add or subtract expressions, expand them to make their denominators the same. Multiply z times \frac{z}{z}.
z^{2}=f\times \frac{yx+zz}{z}z
Since \frac{yx}{z} and \frac{zz}{z} have the same denominator, add them by adding their numerators.
z^{2}=f\times \frac{yx+z^{2}}{z}z
Do the multiplications in yx+zz.
z^{2}=\frac{f\left(yx+z^{2}\right)}{z}z
Express f\times \frac{yx+z^{2}}{z} as a single fraction.
z^{2}=\frac{f\left(yx+z^{2}\right)z}{z}
Express \frac{f\left(yx+z^{2}\right)}{z}z as a single fraction.
z^{2}=f\left(xy+z^{2}\right)
Cancel out z in both numerator and denominator.
z^{2}=fxy+fz^{2}
Use the distributive property to multiply f by xy+z^{2}.
fxy+fz^{2}=z^{2}
Swap sides so that all variable terms are on the left hand side.
fxy=z^{2}-fz^{2}
Subtract fz^{2} from both sides.
fxy=-fz^{2}+z^{2}
Reorder the terms.
fyx=z^{2}-fz^{2}
The equation is in standard form.
\frac{fyx}{fy}=\frac{\left(1-f\right)z^{2}}{fy}
Divide both sides by fy.
x=\frac{\left(1-f\right)z^{2}}{fy}
Dividing by fy undoes the multiplication by fy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}