Solve for y
y=-\frac{x^{2}}{3}+\frac{2x}{3}-\frac{z}{9}
Solve for x (complex solution)
x=-\frac{\sqrt{9-3z-27y}}{3}+1
x=\frac{\sqrt{9-3z-27y}}{3}+1
Solve for x
x=-\frac{\sqrt{9-3z-27y}}{3}+1
x=\frac{\sqrt{9-3z-27y}}{3}+1\text{, }z\leq 3-9y
Share
Copied to clipboard
z=6x-6y-3x^{2}-3y
Use the distributive property to multiply 6 by x-y.
z=6x-9y-3x^{2}
Combine -6y and -3y to get -9y.
6x-9y-3x^{2}=z
Swap sides so that all variable terms are on the left hand side.
-9y-3x^{2}=z-6x
Subtract 6x from both sides.
-9y=z-6x+3x^{2}
Add 3x^{2} to both sides.
-9y=3x^{2}-6x+z
The equation is in standard form.
\frac{-9y}{-9}=\frac{3x^{2}-6x+z}{-9}
Divide both sides by -9.
y=\frac{3x^{2}-6x+z}{-9}
Dividing by -9 undoes the multiplication by -9.
y=-\frac{x^{2}}{3}+\frac{2x}{3}-\frac{z}{9}
Divide z-6x+3x^{2} by -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}