Solve for x
x=\frac{2y}{5}-\frac{z}{50}
Solve for y
y=\frac{50x+z}{20}
Share
Copied to clipboard
-50x+20y=z
Swap sides so that all variable terms are on the left hand side.
-50x=z-20y
Subtract 20y from both sides.
\frac{-50x}{-50}=\frac{z-20y}{-50}
Divide both sides by -50.
x=\frac{z-20y}{-50}
Dividing by -50 undoes the multiplication by -50.
x=\frac{2y}{5}-\frac{z}{50}
Divide z-20y by -50.
-50x+20y=z
Swap sides so that all variable terms are on the left hand side.
20y=z+50x
Add 50x to both sides.
20y=50x+z
The equation is in standard form.
\frac{20y}{20}=\frac{50x+z}{20}
Divide both sides by 20.
y=\frac{50x+z}{20}
Dividing by 20 undoes the multiplication by 20.
y=\frac{z}{20}+\frac{5x}{2}
Divide z+50x by 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}