Solve for a
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-\frac{1}{2}+\frac{7}{2}i\right)
Solve for z
z=\left(-1-i\right)a+\left(-4+3i\right)
Share
Copied to clipboard
z=\left(a-3\right)\left(-i\right)+\left(a+4\right)i^{6}
Calculate i to the power of 3 and get -i.
z=-ia+3i+\left(a+4\right)i^{6}
Use the distributive property to multiply a-3 by -i.
z=-ia+3i+\left(a+4\right)\left(-1\right)
Calculate i to the power of 6 and get -1.
z=-ia+3i-a-4
Use the distributive property to multiply a+4 by -1.
z=\left(-1-i\right)a+3i-4
Combine -ia and -a to get \left(-1-i\right)a.
\left(-1-i\right)a+3i-4=z
Swap sides so that all variable terms are on the left hand side.
\left(-1-i\right)a-4=z-3i
Subtract 3i from both sides.
\left(-1-i\right)a=z-3i+4
Add 4 to both sides.
\left(-1-i\right)a=z+\left(4-3i\right)
The equation is in standard form.
\frac{\left(-1-i\right)a}{-1-i}=\frac{z+\left(4-3i\right)}{-1-i}
Divide both sides by -1-i.
a=\frac{z+\left(4-3i\right)}{-1-i}
Dividing by -1-i undoes the multiplication by -1-i.
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-\frac{1}{2}+\frac{7}{2}i\right)
Divide z+\left(4-3i\right) by -1-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}