Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{3\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}\times \frac{1}{1+i}
Multiply both numerator and denominator of \frac{3}{2-3i} by the complex conjugate of the denominator, 2+3i.
z=\frac{6+9i}{13}\times \frac{1}{1+i}
Do the multiplications in \frac{3\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\times \frac{1}{1+i}
Divide 6+9i by 13 to get \frac{6}{13}+\frac{9}{13}i.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\times \frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\times \frac{1-i}{2}
Do the multiplications in \frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
z=\frac{15}{26}+\frac{3}{26}i
Multiply \frac{6}{13}+\frac{9}{13}i and \frac{1}{2}-\frac{1}{2}i to get \frac{15}{26}+\frac{3}{26}i.