Solve for z
z=\frac{15}{26}+\frac{3}{26}i\approx 0.576923077+0.115384615i
Assign z
z≔\frac{15}{26}+\frac{3}{26}i
Share
Copied to clipboard
z=\frac{3\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}\times \frac{1}{1+i}
Multiply both numerator and denominator of \frac{3}{2-3i} by the complex conjugate of the denominator, 2+3i.
z=\frac{6+9i}{13}\times \frac{1}{1+i}
Do the multiplications in \frac{3\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\times \frac{1}{1+i}
Divide 6+9i by 13 to get \frac{6}{13}+\frac{9}{13}i.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\times \frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\times \frac{1-i}{2}
Do the multiplications in \frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
z=\left(\frac{6}{13}+\frac{9}{13}i\right)\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
z=\frac{15}{26}+\frac{3}{26}i
Multiply \frac{6}{13}+\frac{9}{13}i and \frac{1}{2}-\frac{1}{2}i to get \frac{15}{26}+\frac{3}{26}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}