Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\left(\frac{\left(2+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}\right)^{2}-\left(\frac{2-i}{2+i}\right)^{2}
Multiply both numerator and denominator of \frac{2+i}{2-i} by the complex conjugate of the denominator, 2+i.
z=\left(\frac{3+4i}{5}\right)^{2}-\left(\frac{2-i}{2+i}\right)^{2}
Do the multiplications in \frac{\left(2+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
z=\left(\frac{3}{5}+\frac{4}{5}i\right)^{2}-\left(\frac{2-i}{2+i}\right)^{2}
Divide 3+4i by 5 to get \frac{3}{5}+\frac{4}{5}i.
z=-\frac{7}{25}+\frac{24}{25}i-\left(\frac{2-i}{2+i}\right)^{2}
Calculate \frac{3}{5}+\frac{4}{5}i to the power of 2 and get -\frac{7}{25}+\frac{24}{25}i.
z=-\frac{7}{25}+\frac{24}{25}i-\left(\frac{\left(2-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{2-i}{2+i} by the complex conjugate of the denominator, 2-i.
z=-\frac{7}{25}+\frac{24}{25}i-\left(\frac{3-4i}{5}\right)^{2}
Do the multiplications in \frac{\left(2-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
z=-\frac{7}{25}+\frac{24}{25}i-\left(\frac{3}{5}-\frac{4}{5}i\right)^{2}
Divide 3-4i by 5 to get \frac{3}{5}-\frac{4}{5}i.
z=-\frac{7}{25}+\frac{24}{25}i-\left(-\frac{7}{25}-\frac{24}{25}i\right)
Calculate \frac{3}{5}-\frac{4}{5}i to the power of 2 and get -\frac{7}{25}-\frac{24}{25}i.
z=-\frac{7}{25}+\frac{24}{25}i+\left(\frac{7}{25}+\frac{24}{25}i\right)
The opposite of -\frac{7}{25}-\frac{24}{25}i is \frac{7}{25}+\frac{24}{25}i.
z=\frac{48}{25}i
Add -\frac{7}{25}+\frac{24}{25}i and \frac{7}{25}+\frac{24}{25}i to get \frac{48}{25}i.