Solve for x
x=\frac{1}{yz-1}
z\neq \frac{1}{y}\text{ and }y\neq 0
Solve for y
\left\{\begin{matrix}y=\frac{x+1}{xz}\text{, }&x\neq -1\text{ and }x\neq 0\text{ and }z\neq 0\\y\neq 0\text{, }&z=0\text{ and }x=-1\end{matrix}\right.
Share
Copied to clipboard
zxy=x+1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy.
zxy-x=1
Subtract x from both sides.
\left(zy-1\right)x=1
Combine all terms containing x.
\left(yz-1\right)x=1
The equation is in standard form.
\frac{\left(yz-1\right)x}{yz-1}=\frac{1}{yz-1}
Divide both sides by yz-1.
x=\frac{1}{yz-1}
Dividing by yz-1 undoes the multiplication by yz-1.
x=\frac{1}{yz-1}\text{, }x\neq 0
Variable x cannot be equal to 0.
zxy=x+1
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy.
xyz=x+1
Reorder the terms.
xzy=x+1
The equation is in standard form.
\frac{xzy}{xz}=\frac{x+1}{xz}
Divide both sides by xz.
y=\frac{x+1}{xz}
Dividing by xz undoes the multiplication by xz.
y=\frac{x+1}{xz}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}