Solve for f
\left\{\begin{matrix}f=\frac{sz}{v-p}\text{, }&v\neq p\text{ and }s\neq 0\\f\in \mathrm{R}\text{, }&z=0\text{ and }v=p\text{ and }s\neq 0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{sz}{f}+v\text{, }&s\neq 0\text{ and }f\neq 0\\p\in \mathrm{R}\text{, }&z=0\text{ and }f=0\text{ and }s\neq 0\end{matrix}\right.
Share
Copied to clipboard
zs=\left(v-p\right)f
Multiply both sides of the equation by s.
zs=vf-pf
Use the distributive property to multiply v-p by f.
vf-pf=zs
Swap sides so that all variable terms are on the left hand side.
\left(v-p\right)f=zs
Combine all terms containing f.
\left(v-p\right)f=sz
The equation is in standard form.
\frac{\left(v-p\right)f}{v-p}=\frac{sz}{v-p}
Divide both sides by v-p.
f=\frac{sz}{v-p}
Dividing by v-p undoes the multiplication by v-p.
zs=\left(v-p\right)f
Multiply both sides of the equation by s.
zs=vf-pf
Use the distributive property to multiply v-p by f.
vf-pf=zs
Swap sides so that all variable terms are on the left hand side.
-pf=zs-vf
Subtract vf from both sides.
\left(-f\right)p=sz-fv
The equation is in standard form.
\frac{\left(-f\right)p}{-f}=\frac{sz-fv}{-f}
Divide both sides by -f.
p=\frac{sz-fv}{-f}
Dividing by -f undoes the multiplication by -f.
p=-\frac{sz}{f}+v
Divide zs-vf by -f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}