Solve for j
j=-\frac{2z}{2z-1}
z\neq \frac{1}{2}
Solve for z
z=\frac{j}{2\left(j+1\right)}
j\neq -1
Share
Copied to clipboard
z\times 2\left(j+1\right)=j
Variable j cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 2\left(j+1\right).
2zj+z\times 2=j
Use the distributive property to multiply z\times 2 by j+1.
2zj+z\times 2-j=0
Subtract j from both sides.
2zj-j=-z\times 2
Subtract z\times 2 from both sides. Anything subtracted from zero gives its negation.
2zj-j=-2z
Multiply -1 and 2 to get -2.
\left(2z-1\right)j=-2z
Combine all terms containing j.
\frac{\left(2z-1\right)j}{2z-1}=-\frac{2z}{2z-1}
Divide both sides by 2z-1.
j=-\frac{2z}{2z-1}
Dividing by 2z-1 undoes the multiplication by 2z-1.
j=-\frac{2z}{2z-1}\text{, }j\neq -1
Variable j cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}