Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{-1+i}{2-i}
Use the distributive property to multiply i by i+1.
z=\frac{\left(-1+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{-1+i}{2-i} by the complex conjugate of the denominator, 2+i.
z=\frac{\left(-1+i\right)\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-1+i\right)\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-2-i+2i+i^{2}}{5}
Multiply complex numbers -1+i and 2+i like you multiply binomials.
z=\frac{-2-i+2i-1}{5}
By definition, i^{2} is -1.
z=\frac{-2-1+\left(-1+2\right)i}{5}
Combine the real and imaginary parts in -2-i+2i-1.
z=\frac{-3+i}{5}
Do the additions in -2-1+\left(-1+2\right)i.
z=-\frac{3}{5}+\frac{1}{5}i
Divide -3+i by 5 to get -\frac{3}{5}+\frac{1}{5}i.