Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{i}{2+i} by the complex conjugate of the denominator, 2-i.
z=\frac{i\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{i\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{2i-i^{2}}{5}
Multiply i times 2-i.
z=\frac{2i-\left(-1\right)}{5}
By definition, i^{2} is -1.
z=\frac{1+2i}{5}
Do the multiplications in 2i-\left(-1\right). Reorder the terms.
z=\frac{1}{5}+\frac{2}{5}i
Divide 1+2i by 5 to get \frac{1}{5}+\frac{2}{5}i.