Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{i\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}
Multiply both numerator and denominator of \frac{i}{-2-2i} by the complex conjugate of the denominator, -2+2i.
z=\frac{i\left(-2+2i\right)}{\left(-2\right)^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{i\left(-2+2i\right)}{8}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-2i+2i^{2}}{8}
Multiply i times -2+2i.
z=\frac{-2i+2\left(-1\right)}{8}
By definition, i^{2} is -1.
z=\frac{-2-2i}{8}
Do the multiplications in -2i+2\left(-1\right). Reorder the terms.
z=-\frac{1}{4}-\frac{1}{4}i
Divide -2-2i by 8 to get -\frac{1}{4}-\frac{1}{4}i.