Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{\left(8+i\right)\left(7+4i\right)}{\left(7-4i\right)\left(7+4i\right)}
Multiply both numerator and denominator of \frac{8+i}{7-4i} by the complex conjugate of the denominator, 7+4i.
z=\frac{\left(8+i\right)\left(7+4i\right)}{7^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(8+i\right)\left(7+4i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{8\times 7+8\times \left(4i\right)+7i+4i^{2}}{65}
Multiply complex numbers 8+i and 7+4i like you multiply binomials.
z=\frac{8\times 7+8\times \left(4i\right)+7i+4\left(-1\right)}{65}
By definition, i^{2} is -1.
z=\frac{56+32i+7i-4}{65}
Do the multiplications in 8\times 7+8\times \left(4i\right)+7i+4\left(-1\right).
z=\frac{56-4+\left(32+7\right)i}{65}
Combine the real and imaginary parts in 56+32i+7i-4.
z=\frac{52+39i}{65}
Do the additions in 56-4+\left(32+7\right)i.
z=\frac{4}{5}+\frac{3}{5}i
Divide 52+39i by 65 to get \frac{4}{5}+\frac{3}{5}i.