Solve for z
z=\frac{4}{5}+\frac{3}{5}i=0.8+0.6i
Assign z
z≔\frac{4}{5}+\frac{3}{5}i
Share
Copied to clipboard
z=\frac{\left(8+i\right)\left(7+4i\right)}{\left(7-4i\right)\left(7+4i\right)}
Multiply both numerator and denominator of \frac{8+i}{7-4i} by the complex conjugate of the denominator, 7+4i.
z=\frac{\left(8+i\right)\left(7+4i\right)}{7^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(8+i\right)\left(7+4i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{8\times 7+8\times \left(4i\right)+7i+4i^{2}}{65}
Multiply complex numbers 8+i and 7+4i like you multiply binomials.
z=\frac{8\times 7+8\times \left(4i\right)+7i+4\left(-1\right)}{65}
By definition, i^{2} is -1.
z=\frac{56+32i+7i-4}{65}
Do the multiplications in 8\times 7+8\times \left(4i\right)+7i+4\left(-1\right).
z=\frac{56-4+\left(32+7\right)i}{65}
Combine the real and imaginary parts in 56+32i+7i-4.
z=\frac{52+39i}{65}
Do the additions in 56-4+\left(32+7\right)i.
z=\frac{4}{5}+\frac{3}{5}i
Divide 52+39i by 65 to get \frac{4}{5}+\frac{3}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}