Solve for z
z=-\frac{\sqrt{3}}{2}-\frac{3}{2}i\approx -0.866025404-1.5i
Assign z
z≔-\frac{\sqrt{3}}{2}-\frac{3}{2}i
Share
Copied to clipboard
z=\frac{\left(3\sqrt{3}-3i\right)\sqrt{3}}{2i\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{3}-3i}{2i\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
z=\frac{\left(3\sqrt{3}-3i\right)\sqrt{3}}{2i\times 3}
The square of \sqrt{3} is 3.
z=\frac{\left(3\sqrt{3}-3i\right)\sqrt{3}}{6i}
Multiply 2i and 3 to get 6i.
z=\frac{3\left(\sqrt{3}\right)^{2}-3i\sqrt{3}}{6i}
Use the distributive property to multiply 3\sqrt{3}-3i by \sqrt{3}.
z=\frac{3\times 3-3i\sqrt{3}}{6i}
The square of \sqrt{3} is 3.
z=\frac{9-3i\sqrt{3}}{6i}
Multiply 3 and 3 to get 9.
z=\frac{9}{6i}+\frac{-3i\sqrt{3}}{6i}
Divide each term of 9-3i\sqrt{3} by 6i to get \frac{9}{6i}+\frac{-3i\sqrt{3}}{6i}.
z=\frac{9i}{6i^{2}}+\frac{-3i\sqrt{3}}{6i}
Multiply both numerator and denominator of \frac{9}{6i} by imaginary unit i.
z=\frac{9i}{-6}+\frac{-3i\sqrt{3}}{6i}
By definition, i^{2} is -1. Calculate the denominator.
z=-\frac{3}{2}i+\frac{-3i\sqrt{3}}{6i}
Divide 9i by -6 to get -\frac{3}{2}i.
z=-\frac{3}{2}i-\frac{1}{2}\sqrt{3}
Divide -3i\sqrt{3} by 6i to get -\frac{1}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}