Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{\left(3\sqrt{3}-3i\right)\sqrt{3}}{2i\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{3}-3i}{2i\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
z=\frac{\left(3\sqrt{3}-3i\right)\sqrt{3}}{2i\times 3}
The square of \sqrt{3} is 3.
z=\frac{\left(3\sqrt{3}-3i\right)\sqrt{3}}{6i}
Multiply 2i and 3 to get 6i.
z=\frac{3\left(\sqrt{3}\right)^{2}-3i\sqrt{3}}{6i}
Use the distributive property to multiply 3\sqrt{3}-3i by \sqrt{3}.
z=\frac{3\times 3-3i\sqrt{3}}{6i}
The square of \sqrt{3} is 3.
z=\frac{9-3i\sqrt{3}}{6i}
Multiply 3 and 3 to get 9.
z=\frac{9}{6i}+\frac{-3i\sqrt{3}}{6i}
Divide each term of 9-3i\sqrt{3} by 6i to get \frac{9}{6i}+\frac{-3i\sqrt{3}}{6i}.
z=\frac{9i}{6i^{2}}+\frac{-3i\sqrt{3}}{6i}
Multiply both numerator and denominator of \frac{9}{6i} by imaginary unit i.
z=\frac{9i}{-6}+\frac{-3i\sqrt{3}}{6i}
By definition, i^{2} is -1. Calculate the denominator.
z=-\frac{3}{2}i+\frac{-3i\sqrt{3}}{6i}
Divide 9i by -6 to get -\frac{3}{2}i.
z=-\frac{3}{2}i-\frac{1}{2}\sqrt{3}
Divide -3i\sqrt{3} by 6i to get -\frac{1}{2}\sqrt{3}.