Solve for j
j=\frac{\sqrt{3}\left(3z+1\right)}{3\left(\sqrt{3}z+1\right)}
z\neq -\frac{\sqrt{3}}{3}
Solve for z
z=-\frac{\sqrt{3}j-1}{3\left(j-1\right)}
j\neq 1
Share
Copied to clipboard
z\times 3\left(j-1\right)=1-j\sqrt{3}
Variable j cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 3\left(j-1\right).
3zj-z\times 3=1-j\sqrt{3}
Use the distributive property to multiply z\times 3 by j-1.
3zj-3z=1-j\sqrt{3}
Multiply -1 and 3 to get -3.
3zj-3z+j\sqrt{3}=1
Add j\sqrt{3} to both sides.
3zj+j\sqrt{3}=1+3z
Add 3z to both sides.
\left(3z+\sqrt{3}\right)j=1+3z
Combine all terms containing j.
\left(3z+\sqrt{3}\right)j=3z+1
The equation is in standard form.
\frac{\left(3z+\sqrt{3}\right)j}{3z+\sqrt{3}}=\frac{3z+1}{3z+\sqrt{3}}
Divide both sides by 3z+\sqrt{3}.
j=\frac{3z+1}{3z+\sqrt{3}}
Dividing by 3z+\sqrt{3} undoes the multiplication by 3z+\sqrt{3}.
j=\frac{\sqrt{3}\left(3z+1\right)}{3\left(\sqrt{3}z+1\right)}
Divide 1+3z by 3z+\sqrt{3}.
j=\frac{\sqrt{3}\left(3z+1\right)}{3\left(\sqrt{3}z+1\right)}\text{, }j\neq 1
Variable j cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}