Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{\left(1-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator of \frac{1-i}{3+i} by the complex conjugate of the denominator, 3-i.
z=\frac{\left(1-i\right)\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1-i\right)\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-i^{2}\right)}{10}
Multiply complex numbers 1-i and 3-i like you multiply binomials.
z=\frac{1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right)}{10}
By definition, i^{2} is -1.
z=\frac{3-i-3i-1}{10}
Do the multiplications in 1\times 3+1\left(-i\right)-i\times 3-\left(-\left(-1\right)\right).
z=\frac{3-1+\left(-1-3\right)i}{10}
Combine the real and imaginary parts in 3-i-3i-1.
z=\frac{2-4i}{10}
Do the additions in 3-1+\left(-1-3\right)i.
z=\frac{1}{5}-\frac{2}{5}i
Divide 2-4i by 10 to get \frac{1}{5}-\frac{2}{5}i.