Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{1}{1+i}+\frac{i\sqrt{3}}{1+i}
Divide each term of 1+i\sqrt{3} by 1+i to get \frac{1}{1+i}+\frac{i\sqrt{3}}{1+i}.
z=\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{i\sqrt{3}}{1+i}
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
z=\frac{1\left(1-i\right)}{1^{2}-i^{2}}+\frac{i\sqrt{3}}{1+i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{1\left(1-i\right)}{2}+\frac{i\sqrt{3}}{1+i}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1-i}{2}+\frac{i\sqrt{3}}{1+i}
Multiply 1 and 1-i to get 1-i.
z=\frac{1}{2}-\frac{1}{2}i+\frac{i\sqrt{3}}{1+i}
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
z=\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt{3}
Divide i\sqrt{3} by 1+i to get \left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt{3}.