Solve for z
z=\sqrt{3}\left(\frac{1}{2}+\frac{1}{2}i\right)+\left(\frac{1}{2}-\frac{1}{2}i\right)\approx 1.366025404+0.366025404i
Assign z
z≔\sqrt{3}\left(\frac{1}{2}+\frac{1}{2}i\right)+\left(\frac{1}{2}-\frac{1}{2}i\right)
Share
Copied to clipboard
z=\frac{1}{1+i}+\frac{i\sqrt{3}}{1+i}
Divide each term of 1+i\sqrt{3} by 1+i to get \frac{1}{1+i}+\frac{i\sqrt{3}}{1+i}.
z=\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{i\sqrt{3}}{1+i}
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
z=\frac{1\left(1-i\right)}{1^{2}-i^{2}}+\frac{i\sqrt{3}}{1+i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{1\left(1-i\right)}{2}+\frac{i\sqrt{3}}{1+i}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1-i}{2}+\frac{i\sqrt{3}}{1+i}
Multiply 1 and 1-i to get 1-i.
z=\frac{1}{2}-\frac{1}{2}i+\frac{i\sqrt{3}}{1+i}
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
z=\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt{3}
Divide i\sqrt{3} by 1+i to get \left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}