Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{-5}{3+4i}+\frac{10z}{3+4i}
Divide each term of -5+10z by 3+4i to get \frac{-5}{3+4i}+\frac{10z}{3+4i}.
z=\frac{-5\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}+\frac{10z}{3+4i}
Multiply both numerator and denominator of \frac{-5}{3+4i} by the complex conjugate of the denominator, 3-4i.
z=\frac{-5\left(3-4i\right)}{3^{2}-4^{2}i^{2}}+\frac{10z}{3+4i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{-5\left(3-4i\right)}{25}+\frac{10z}{3+4i}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-5\times 3-5\times \left(-4i\right)}{25}+\frac{10z}{3+4i}
Multiply -5 times 3-4i.
z=\frac{-15+20i}{25}+\frac{10z}{3+4i}
Do the multiplications in -5\times 3-5\times \left(-4i\right).
z=-\frac{3}{5}+\frac{4}{5}i+\frac{10z}{3+4i}
Divide -15+20i by 25 to get -\frac{3}{5}+\frac{4}{5}i.
z=-\frac{3}{5}+\frac{4}{5}i+\left(\frac{6}{5}-\frac{8}{5}i\right)z
Divide 10z by 3+4i to get \left(\frac{6}{5}-\frac{8}{5}i\right)z.
z-\left(\frac{6}{5}-\frac{8}{5}i\right)z=-\frac{3}{5}+\frac{4}{5}i
Subtract \left(\frac{6}{5}-\frac{8}{5}i\right)z from both sides.
\left(-\frac{1}{5}+\frac{8}{5}i\right)z=-\frac{3}{5}+\frac{4}{5}i
Combine z and \left(-\frac{6}{5}+\frac{8}{5}i\right)z to get \left(-\frac{1}{5}+\frac{8}{5}i\right)z.
z=\frac{-\frac{3}{5}+\frac{4}{5}i}{-\frac{1}{5}+\frac{8}{5}i}
Divide both sides by -\frac{1}{5}+\frac{8}{5}i.
z=\frac{\left(-\frac{3}{5}+\frac{4}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}{\left(-\frac{1}{5}+\frac{8}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}
Multiply both numerator and denominator of \frac{-\frac{3}{5}+\frac{4}{5}i}{-\frac{1}{5}+\frac{8}{5}i} by the complex conjugate of the denominator, -\frac{1}{5}-\frac{8}{5}i.
z=\frac{\left(-\frac{3}{5}+\frac{4}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}{\left(-\frac{1}{5}\right)^{2}-\left(\frac{8}{5}\right)^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-\frac{3}{5}+\frac{4}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}{\frac{13}{5}}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-\frac{3}{5}\left(-\frac{1}{5}\right)-\frac{3}{5}\times \left(-\frac{8}{5}i\right)+\frac{4}{5}i\left(-\frac{1}{5}\right)+\frac{4}{5}\left(-\frac{8}{5}\right)i^{2}}{\frac{13}{5}}
Multiply complex numbers -\frac{3}{5}+\frac{4}{5}i and -\frac{1}{5}-\frac{8}{5}i like you multiply binomials.
z=\frac{-\frac{3}{5}\left(-\frac{1}{5}\right)-\frac{3}{5}\times \left(-\frac{8}{5}i\right)+\frac{4}{5}i\left(-\frac{1}{5}\right)+\frac{4}{5}\left(-\frac{8}{5}\right)\left(-1\right)}{\frac{13}{5}}
By definition, i^{2} is -1.
z=\frac{\frac{3}{25}+\frac{24}{25}i-\frac{4}{25}i+\frac{32}{25}}{\frac{13}{5}}
Do the multiplications in -\frac{3}{5}\left(-\frac{1}{5}\right)-\frac{3}{5}\times \left(-\frac{8}{5}i\right)+\frac{4}{5}i\left(-\frac{1}{5}\right)+\frac{4}{5}\left(-\frac{8}{5}\right)\left(-1\right).
z=\frac{\frac{3}{25}+\frac{32}{25}+\left(\frac{24}{25}-\frac{4}{25}\right)i}{\frac{13}{5}}
Combine the real and imaginary parts in \frac{3}{25}+\frac{24}{25}i-\frac{4}{25}i+\frac{32}{25}.
z=\frac{\frac{7}{5}+\frac{4}{5}i}{\frac{13}{5}}
Do the additions in \frac{3}{25}+\frac{32}{25}+\left(\frac{24}{25}-\frac{4}{25}\right)i.
z=\frac{7}{13}+\frac{4}{13}i
Divide \frac{7}{5}+\frac{4}{5}i by \frac{13}{5} to get \frac{7}{13}+\frac{4}{13}i.