Skip to main content
Solve for z
Tick mark Image
Assign z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{\left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}
Rationalize the denominator of \frac{-1-i\sqrt{3}}{1+i\sqrt{3}} by multiplying numerator and denominator by 1-i\sqrt{3}.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{1^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{1-\left(i\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{1-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{1+3}
Multiply -1 and -3 to get 3.
z=\frac{\left(-1-i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}{4}
Add 1 and 3 to get 4.
z=\frac{-1-i\sqrt{3}-i\left(-1-i\sqrt{3}\right)\sqrt{3}}{4}
Use the distributive property to multiply -1-i\sqrt{3} by 1-i\sqrt{3}.
z=\frac{-\sqrt{3}i\left(-1-\sqrt{3}i\right)+-1-\sqrt{3}i}{4}
Reorder the terms.
z=\frac{-i\sqrt{3}\left(-1-\sqrt{3}i\right)-1-\sqrt{3}i}{4}
Multiply -1 and i to get -i.
z=\frac{-i\sqrt{3}\left(-1-i\sqrt{3}\right)-1-\sqrt{3}i}{4}
Multiply -1 and i to get -i.
z=\frac{-i\sqrt{3}\left(-1-i\sqrt{3}\right)-1-i\sqrt{3}}{4}
Multiply -1 and i to get -i.
z=\frac{i\sqrt{3}-\left(\sqrt{3}\right)^{2}-1-i\sqrt{3}}{4}
Use the distributive property to multiply -i\sqrt{3} by -1-i\sqrt{3}.
z=\frac{i\sqrt{3}-3-1-i\sqrt{3}}{4}
The square of \sqrt{3} is 3.
z=\frac{i\sqrt{3}-4-i\sqrt{3}}{4}
Subtract 1 from -3 to get -4.
z=\frac{-4}{4}
Combine i\sqrt{3} and -i\sqrt{3} to get 0.
z=-1
Divide -4 by 4 to get -1.