Solve for z
z=-\frac{2}{5}+\frac{9}{5}i=-0.4+1.8i
Assign z
z≔-\frac{2}{5}+\frac{9}{5}i
Share
Copied to clipboard
z=\frac{4+3i+1}{\left(2-i\right)^{2}-2+i}
Multiply 1+2i and 2-i to get 4+3i.
z=\frac{5+3i}{\left(2-i\right)^{2}-2+i}
Add 4+3i and 1 to get 5+3i.
z=\frac{5+3i}{3-4i-2+i}
Calculate 2-i to the power of 2 and get 3-4i.
z=\frac{5+3i}{1-3i}
Do the additions in 3-4i-2+i.
z=\frac{\left(5+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator of \frac{5+3i}{1-3i} by the complex conjugate of the denominator, 1+3i.
z=\frac{-4+18i}{10}
Do the multiplications in \frac{\left(5+3i\right)\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
z=-\frac{2}{5}+\frac{9}{5}i
Divide -4+18i by 10 to get -\frac{2}{5}+\frac{9}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}