Solve for x
\left\{\begin{matrix}x=-\frac{y\left(\sin(z)+\cos(z)\right)}{\cos(z)-\sin(z)}\text{, }&\nexists n_{3}\in \mathrm{Z}\text{ : }\left(z=\pi n_{3}+\frac{\pi }{2}\text{ or }z=\pi n_{3}+\frac{\pi }{4}\right)\text{ and }y\neq 0\text{ and }|z|\leq \frac{\pi }{2}\\x\neq 0\text{, }&y=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }z=\pi n_{2}+\frac{\pi }{4}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }z=\pi n_{1}+\frac{\pi }{2}\text{ and }|z|\leq \frac{\pi }{2}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{x\left(\cos(z)-\sin(z)\right)}{\sin(z)+\cos(z)}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\left(z>\pi n_{2}+\frac{3\pi }{4}\text{ and }z<\pi n_{2}+\frac{3\pi }{2}\right)\text{ or }\left(z>\pi n_{2}+\frac{\pi }{2}\text{ and }z<\pi n_{2}+\frac{3\pi }{4}\right)\right)\text{, }n_{2}=-1\text{ and }x\neq 0\\y\neq 0\text{, }&x=0\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }z=\pi n_{3}+\frac{3\pi }{4}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }z=\pi n_{1}+\frac{\pi }{2}\text{ and }|z|\leq \frac{\pi }{2}\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}