Solve for z
z = -\frac{37}{13} = -2\frac{11}{13} \approx -2.846153846
Share
Copied to clipboard
z=\frac{-23-\frac{5-z}{3}}{9}
Subtract 7 from -16 to get -23.
z=\frac{-23-\left(\frac{5}{3}-\frac{1}{3}z\right)}{9}
Divide each term of 5-z by 3 to get \frac{5}{3}-\frac{1}{3}z.
z=\frac{-23-\frac{5}{3}-\left(-\frac{1}{3}z\right)}{9}
To find the opposite of \frac{5}{3}-\frac{1}{3}z, find the opposite of each term.
z=\frac{-23-\frac{5}{3}+\frac{1}{3}z}{9}
The opposite of -\frac{1}{3}z is \frac{1}{3}z.
z=\frac{-\frac{69}{3}-\frac{5}{3}+\frac{1}{3}z}{9}
Convert -23 to fraction -\frac{69}{3}.
z=\frac{\frac{-69-5}{3}+\frac{1}{3}z}{9}
Since -\frac{69}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
z=\frac{-\frac{74}{3}+\frac{1}{3}z}{9}
Subtract 5 from -69 to get -74.
z=-\frac{74}{27}+\frac{1}{27}z
Divide each term of -\frac{74}{3}+\frac{1}{3}z by 9 to get -\frac{74}{27}+\frac{1}{27}z.
z-\frac{1}{27}z=-\frac{74}{27}
Subtract \frac{1}{27}z from both sides.
\frac{26}{27}z=-\frac{74}{27}
Combine z and -\frac{1}{27}z to get \frac{26}{27}z.
z=-\frac{74}{27}\times \frac{27}{26}
Multiply both sides by \frac{27}{26}, the reciprocal of \frac{26}{27}.
z=\frac{-74\times 27}{27\times 26}
Multiply -\frac{74}{27} times \frac{27}{26} by multiplying numerator times numerator and denominator times denominator.
z=\frac{-74}{26}
Cancel out 27 in both numerator and denominator.
z=-\frac{37}{13}
Reduce the fraction \frac{-74}{26} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}