Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(1+i\right)z=4-2i
Combine z and zi to get \left(1+i\right)z.
z=\frac{4-2i}{1+i}
Divide both sides by 1+i.
z=\frac{\left(4-2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{4-2i}{1+i} by the complex conjugate of the denominator, 1-i.
z=\frac{\left(4-2i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(4-2i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)i^{2}}{2}
Multiply complex numbers 4-2i and 1-i like you multiply binomials.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
z=\frac{4-4i-2i-2}{2}
Do the multiplications in 4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right).
z=\frac{4-2+\left(-4-2\right)i}{2}
Combine the real and imaginary parts in 4-4i-2i-2.
z=\frac{2-6i}{2}
Do the additions in 4-2+\left(-4-2\right)i.
z=1-3i
Divide 2-6i by 2 to get 1-3i.