Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z+\left(3\times 1+3i\right)z-8\left(2-i\right)=0
Multiply 3 times 1+i.
z+\left(3+3i\right)z-8\left(2-i\right)=0
Do the multiplications in 3\times 1+3i.
\left(4+3i\right)z-8\left(2-i\right)=0
Combine z and \left(3+3i\right)z to get \left(4+3i\right)z.
\left(4+3i\right)z-\left(8\times 2+8\left(-i\right)\right)=0
Multiply 8 times 2-i.
\left(4+3i\right)z-\left(16-8i\right)=0
Do the multiplications in 8\times 2+8\left(-i\right).
\left(4+3i\right)z=0+\left(16-8i\right)
Add 16-8i to both sides.
\left(4+3i\right)z=16-8i
Anything plus zero gives itself.
z=\frac{16-8i}{4+3i}
Divide both sides by 4+3i.
z=\frac{\left(16-8i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
Multiply both numerator and denominator of \frac{16-8i}{4+3i} by the complex conjugate of the denominator, 4-3i.
z=\frac{\left(16-8i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(16-8i\right)\left(4-3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{16\times 4+16\times \left(-3i\right)-8i\times 4-8\left(-3\right)i^{2}}{25}
Multiply complex numbers 16-8i and 4-3i like you multiply binomials.
z=\frac{16\times 4+16\times \left(-3i\right)-8i\times 4-8\left(-3\right)\left(-1\right)}{25}
By definition, i^{2} is -1.
z=\frac{64-48i-32i-24}{25}
Do the multiplications in 16\times 4+16\times \left(-3i\right)-8i\times 4-8\left(-3\right)\left(-1\right).
z=\frac{64-24+\left(-48-32\right)i}{25}
Combine the real and imaginary parts in 64-48i-32i-24.
z=\frac{40-80i}{25}
Do the additions in 64-24+\left(-48-32\right)i.
z=\frac{8}{5}-\frac{16}{5}i
Divide 40-80i by 25 to get \frac{8}{5}-\frac{16}{5}i.