Solve for z
z=5
Share
Copied to clipboard
\left(z+2\right)^{2}=\left(\sqrt{6z+19}\right)^{2}
Square both sides of the equation.
z^{2}+4z+4=\left(\sqrt{6z+19}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z+2\right)^{2}.
z^{2}+4z+4=6z+19
Calculate \sqrt{6z+19} to the power of 2 and get 6z+19.
z^{2}+4z+4-6z=19
Subtract 6z from both sides.
z^{2}-2z+4=19
Combine 4z and -6z to get -2z.
z^{2}-2z+4-19=0
Subtract 19 from both sides.
z^{2}-2z-15=0
Subtract 19 from 4 to get -15.
a+b=-2 ab=-15
To solve the equation, factor z^{2}-2z-15 using formula z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-5 b=3
The solution is the pair that gives sum -2.
\left(z-5\right)\left(z+3\right)
Rewrite factored expression \left(z+a\right)\left(z+b\right) using the obtained values.
z=5 z=-3
To find equation solutions, solve z-5=0 and z+3=0.
5+2=\sqrt{6\times 5+19}
Substitute 5 for z in the equation z+2=\sqrt{6z+19}.
7=7
Simplify. The value z=5 satisfies the equation.
-3+2=\sqrt{6\left(-3\right)+19}
Substitute -3 for z in the equation z+2=\sqrt{6z+19}.
-1=1
Simplify. The value z=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
z=5
Equation z+2=\sqrt{6z+19} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}