Solve for g
g=-\frac{4}{z+1}
z\neq -1
Solve for z
z=-1-\frac{4}{g}
g\neq 0
Share
Copied to clipboard
gz+g=-4
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g.
\left(z+1\right)g=-4
Combine all terms containing g.
\frac{\left(z+1\right)g}{z+1}=-\frac{4}{z+1}
Divide both sides by z+1.
g=-\frac{4}{z+1}
Dividing by z+1 undoes the multiplication by z+1.
g=-\frac{4}{z+1}\text{, }g\neq 0
Variable g cannot be equal to 0.
gz+g=-4
Multiply both sides of the equation by g.
gz=-4-g
Subtract g from both sides.
gz=-g-4
The equation is in standard form.
\frac{gz}{g}=\frac{-g-4}{g}
Divide both sides by g.
z=\frac{-g-4}{g}
Dividing by g undoes the multiplication by g.
z=-1-\frac{4}{g}
Divide -4-g by g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}