Solve for x
x=\frac{49-y}{8}
Solve for y
y=49-8x
Graph
Share
Copied to clipboard
y-9=-8x+40
Use the distributive property to multiply -8 by x-5.
-8x+40=y-9
Swap sides so that all variable terms are on the left hand side.
-8x=y-9-40
Subtract 40 from both sides.
-8x=y-49
Subtract 40 from -9 to get -49.
\frac{-8x}{-8}=\frac{y-49}{-8}
Divide both sides by -8.
x=\frac{y-49}{-8}
Dividing by -8 undoes the multiplication by -8.
x=\frac{49-y}{8}
Divide y-49 by -8.
y-9=-8x+40
Use the distributive property to multiply -8 by x-5.
y=-8x+40+9
Add 9 to both sides.
y=-8x+49
Add 40 and 9 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}