Solve for x
x=\frac{y+25}{10}
Solve for y
y=10x-25
Graph
Share
Copied to clipboard
10x-30=y-5
Swap sides so that all variable terms are on the left hand side.
10x=y-5+30
Add 30 to both sides.
10x=y+25
Add -5 and 30 to get 25.
\frac{10x}{10}=\frac{y+25}{10}
Divide both sides by 10.
x=\frac{y+25}{10}
Dividing by 10 undoes the multiplication by 10.
x=\frac{y}{10}+\frac{5}{2}
Divide y+25 by 10.
y=10x-30+5
Add 5 to both sides.
y=10x-25
Add -30 and 5 to get -25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}