Solve for x
x=\frac{4y}{1875}+\frac{93661}{750}
Solve for y
y=\frac{1875x}{4}-58538.125
Graph
Share
Copied to clipboard
y-20=\frac{90000}{192}\left(x-124.924\right)
Expand \frac{90}{0.192} by multiplying both numerator and the denominator by 1000.
y-20=\frac{1875}{4}\left(x-124.924\right)
Reduce the fraction \frac{90000}{192} to lowest terms by extracting and canceling out 48.
y-20=\frac{1875}{4}x-\frac{468465}{8}
Use the distributive property to multiply \frac{1875}{4} by x-124.924.
\frac{1875}{4}x-\frac{468465}{8}=y-20
Swap sides so that all variable terms are on the left hand side.
\frac{1875}{4}x=y-20+\frac{468465}{8}
Add \frac{468465}{8} to both sides.
\frac{1875}{4}x=y+\frac{468305}{8}
Add -20 and \frac{468465}{8} to get \frac{468305}{8}.
\frac{\frac{1875}{4}x}{\frac{1875}{4}}=\frac{y+\frac{468305}{8}}{\frac{1875}{4}}
Divide both sides of the equation by \frac{1875}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{468305}{8}}{\frac{1875}{4}}
Dividing by \frac{1875}{4} undoes the multiplication by \frac{1875}{4}.
x=\frac{4y}{1875}+\frac{93661}{750}
Divide y+\frac{468305}{8} by \frac{1875}{4} by multiplying y+\frac{468305}{8} by the reciprocal of \frac{1875}{4}.
y-20=\frac{90000}{192}\left(x-124.924\right)
Expand \frac{90}{0.192} by multiplying both numerator and the denominator by 1000.
y-20=\frac{1875}{4}\left(x-124.924\right)
Reduce the fraction \frac{90000}{192} to lowest terms by extracting and canceling out 48.
y-20=\frac{1875}{4}x-\frac{468465}{8}
Use the distributive property to multiply \frac{1875}{4} by x-124.924.
y=\frac{1875}{4}x-\frac{468465}{8}+20
Add 20 to both sides.
y=\frac{1875}{4}x-\frac{468305}{8}
Add -\frac{468465}{8} and 20 to get -\frac{468305}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}