Solve for x
x=10-6y
Solve for y
y=-\frac{x}{6}+\frac{5}{3}
Graph
Share
Copied to clipboard
y-1=-\frac{1}{6}x+\frac{2}{3}
Use the distributive property to multiply -\frac{1}{6} by x-4.
-\frac{1}{6}x+\frac{2}{3}=y-1
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}x=y-1-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-\frac{1}{6}x=y-\frac{5}{3}
Subtract \frac{2}{3} from -1 to get -\frac{5}{3}.
\frac{-\frac{1}{6}x}{-\frac{1}{6}}=\frac{y-\frac{5}{3}}{-\frac{1}{6}}
Multiply both sides by -6.
x=\frac{y-\frac{5}{3}}{-\frac{1}{6}}
Dividing by -\frac{1}{6} undoes the multiplication by -\frac{1}{6}.
x=10-6y
Divide y-\frac{5}{3} by -\frac{1}{6} by multiplying y-\frac{5}{3} by the reciprocal of -\frac{1}{6}.
y-1=-\frac{1}{6}x+\frac{2}{3}
Use the distributive property to multiply -\frac{1}{6} by x-4.
y=-\frac{1}{6}x+\frac{2}{3}+1
Add 1 to both sides.
y=-\frac{1}{6}x+\frac{5}{3}
Add \frac{2}{3} and 1 to get \frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}