Solve for x
x=-\frac{4y}{3}+\frac{17}{15}
Solve for y
y=-\frac{3x}{4}+\frac{17}{20}
Graph
Share
Copied to clipboard
y-\frac{2}{5}=-\frac{3}{4}\left(x-\frac{3}{5}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
y-\frac{2}{5}=-\frac{3}{4}x+\frac{9}{20}
Use the distributive property to multiply -\frac{3}{4} by x-\frac{3}{5}.
-\frac{3}{4}x+\frac{9}{20}=y-\frac{2}{5}
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{4}x=y-\frac{2}{5}-\frac{9}{20}
Subtract \frac{9}{20} from both sides.
-\frac{3}{4}x=y-\frac{17}{20}
Subtract \frac{9}{20} from -\frac{2}{5} to get -\frac{17}{20}.
\frac{-\frac{3}{4}x}{-\frac{3}{4}}=\frac{y-\frac{17}{20}}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{17}{20}}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
x=-\frac{4y}{3}+\frac{17}{15}
Divide y-\frac{17}{20} by -\frac{3}{4} by multiplying y-\frac{17}{20} by the reciprocal of -\frac{3}{4}.
y-\frac{2}{5}=-\frac{3}{4}\left(x-\frac{3}{5}\right)
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
y-\frac{2}{5}=-\frac{3}{4}x+\frac{9}{20}
Use the distributive property to multiply -\frac{3}{4} by x-\frac{3}{5}.
y=-\frac{3}{4}x+\frac{9}{20}+\frac{2}{5}
Add \frac{2}{5} to both sides.
y=-\frac{3}{4}x+\frac{17}{20}
Add \frac{9}{20} and \frac{2}{5} to get \frac{17}{20}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}