Solve for y
y=\frac{x^{2}-2x-11}{2}
Solve for x (complex solution)
x=-\sqrt{2\left(y+6\right)}+1
x=\sqrt{2\left(y+6\right)}+1
Solve for x
x=-\sqrt{2\left(y+6\right)}+1
x=\sqrt{2\left(y+6\right)}+1\text{, }y\geq -6
Graph
Share
Copied to clipboard
2y-\left(x^{2}-2x-15\right)=4
Multiply both sides of the equation by 2.
2y-x^{2}+2x+15=4
To find the opposite of x^{2}-2x-15, find the opposite of each term.
2y+2x+15=4+x^{2}
Add x^{2} to both sides.
2y+15=4+x^{2}-2x
Subtract 2x from both sides.
2y=4+x^{2}-2x-15
Subtract 15 from both sides.
2y=-11+x^{2}-2x
Subtract 15 from 4 to get -11.
2y=x^{2}-2x-11
The equation is in standard form.
\frac{2y}{2}=\frac{x^{2}-2x-11}{2}
Divide both sides by 2.
y=\frac{x^{2}-2x-11}{2}
Dividing by 2 undoes the multiplication by 2.
y=\frac{x^{2}}{2}-x-\frac{11}{2}
Divide -11+x^{2}-2x by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}