Evaluate
\frac{\left(3x+4\right)\left(x^{5}+1\right)}{x^{8}}
Expand
\frac{3x^{6}+4x^{5}+3x+4}{x^{8}}
Graph
Share
Copied to clipboard
\left(\frac{3x}{x^{4}}+\frac{4}{x^{4}}\right)\left(x+\frac{1}{x^{4}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and x^{4} is x^{4}. Multiply \frac{3}{x^{3}} times \frac{x}{x}.
\frac{3x+4}{x^{4}}\left(x+\frac{1}{x^{4}}\right)
Since \frac{3x}{x^{4}} and \frac{4}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{3x+4}{x^{4}}\left(\frac{xx^{4}}{x^{4}}+\frac{1}{x^{4}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x^{4}}{x^{4}}.
\frac{3x+4}{x^{4}}\times \frac{xx^{4}+1}{x^{4}}
Since \frac{xx^{4}}{x^{4}} and \frac{1}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{3x+4}{x^{4}}\times \frac{x^{5}+1}{x^{4}}
Do the multiplications in xx^{4}+1.
\frac{\left(3x+4\right)\left(x^{5}+1\right)}{x^{4}x^{4}}
Multiply \frac{3x+4}{x^{4}} times \frac{x^{5}+1}{x^{4}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x+4\right)\left(x^{5}+1\right)}{x^{8}}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{3x^{6}+3x+4x^{5}+4}{x^{8}}
Use the distributive property to multiply 3x+4 by x^{5}+1.
\left(\frac{3x}{x^{4}}+\frac{4}{x^{4}}\right)\left(x+\frac{1}{x^{4}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and x^{4} is x^{4}. Multiply \frac{3}{x^{3}} times \frac{x}{x}.
\frac{3x+4}{x^{4}}\left(x+\frac{1}{x^{4}}\right)
Since \frac{3x}{x^{4}} and \frac{4}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{3x+4}{x^{4}}\left(\frac{xx^{4}}{x^{4}}+\frac{1}{x^{4}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x^{4}}{x^{4}}.
\frac{3x+4}{x^{4}}\times \frac{xx^{4}+1}{x^{4}}
Since \frac{xx^{4}}{x^{4}} and \frac{1}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{3x+4}{x^{4}}\times \frac{x^{5}+1}{x^{4}}
Do the multiplications in xx^{4}+1.
\frac{\left(3x+4\right)\left(x^{5}+1\right)}{x^{4}x^{4}}
Multiply \frac{3x+4}{x^{4}} times \frac{x^{5}+1}{x^{4}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x+4\right)\left(x^{5}+1\right)}{x^{8}}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{3x^{6}+3x+4x^{5}+4}{x^{8}}
Use the distributive property to multiply 3x+4 by x^{5}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}