Solve for x
x=-e^{5}\left(y-2\right)+3
Solve for y
y=-\frac{x-2e^{5}-3}{e^{5}}
Graph
Share
Copied to clipboard
y=2-\left(xe^{-5}-3e^{-5}\right)
Use the distributive property to multiply x-3 by e^{-5}.
y=2-xe^{-5}+3e^{-5}
To find the opposite of xe^{-5}-3e^{-5}, find the opposite of each term.
2-xe^{-5}+3e^{-5}=y
Swap sides so that all variable terms are on the left hand side.
-xe^{-5}+3e^{-5}=y-2
Subtract 2 from both sides.
-xe^{-5}=y-2-3e^{-5}
Subtract 3e^{-5} from both sides.
\left(-\frac{1}{e^{5}}\right)x=y-\frac{3}{e^{5}}-2
The equation is in standard form.
\frac{\left(-\frac{1}{e^{5}}\right)x}{-\frac{1}{e^{5}}}=\frac{y-\frac{3}{e^{5}}-2}{-\frac{1}{e^{5}}}
Divide both sides by -e^{-5}.
x=\frac{y-\frac{3}{e^{5}}-2}{-\frac{1}{e^{5}}}
Dividing by -e^{-5} undoes the multiplication by -e^{-5}.
x=3+2e^{5}-e^{5}y
Divide y-\frac{3}{e^{5}}-2 by -e^{-5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}