Solve for x
x=-\frac{y-4}{3-2y}
y\neq \frac{3}{2}
Solve for y
y=-\frac{3x-4}{1-2x}
x\neq \frac{1}{2}
Graph
Share
Copied to clipboard
y\left(-2x+1\right)=4-3x
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by -2x+1.
-2yx+y=4-3x
Use the distributive property to multiply y by -2x+1.
-2yx+y+3x=4
Add 3x to both sides.
-2yx+3x=4-y
Subtract y from both sides.
\left(-2y+3\right)x=4-y
Combine all terms containing x.
\left(3-2y\right)x=4-y
The equation is in standard form.
\frac{\left(3-2y\right)x}{3-2y}=\frac{4-y}{3-2y}
Divide both sides by -2y+3.
x=\frac{4-y}{3-2y}
Dividing by -2y+3 undoes the multiplication by -2y+3.
x=\frac{4-y}{3-2y}\text{, }x\neq \frac{1}{2}
Variable x cannot be equal to \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}