Solve for y (complex solution)
y=\sqrt{\tan(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
Solve for x
x=\pi +2\pi n_{24}+arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})\text{, }n_{24}\in \mathrm{Z}\text{, }\exists n_{21}\in \mathrm{Z}\text{ : }\left(n_{21}<2n_{24}+2\text{ and }n_{21}>\left(arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})+\frac{1}{2}\pi +2\pi n_{24}\right)\pi ^{-1}\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(not(\pi +2\pi n_{24}+arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})<\pi n_{6})\text{ and }\pi +2\pi n_{24}+arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})<\frac{1}{2}\pi +\pi n_{6}\right)
x=arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})+2n_{43}\pi \text{, }n_{43}\in \mathrm{Z}\text{, }\exists n_{21}\in \mathrm{Z}\text{ : }\left(n_{21}<2n_{43}+1\text{ and }arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})+2n_{43}\pi <\pi \left(n_{21}+\frac{1}{2}\right)\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(not(arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})+2n_{43}\pi <\pi n_{6})\text{ and }arcSin(y^{2}\left(y^{4}+1\right)^{-\frac{1}{2}})+2n_{43}\pi <\frac{1}{2}\pi +\pi n_{6}\right)
Solve for y
y=\sqrt{\tan(x)}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x\geq \pi n_{1}\text{ and }x<\pi n_{1}+\frac{\pi }{2}\right)
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}