Solve for y
y = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Share
Copied to clipboard
y=\frac{y}{4}+\frac{5\times 2}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{5}{2} times \frac{2}{2}.
y=\frac{y+5\times 2}{4}
Since \frac{y}{4} and \frac{5\times 2}{4} have the same denominator, add them by adding their numerators.
y=\frac{y+10}{4}
Do the multiplications in y+5\times 2.
y=\frac{1}{4}y+\frac{5}{2}
Divide each term of y+10 by 4 to get \frac{1}{4}y+\frac{5}{2}.
y-\frac{1}{4}y=\frac{5}{2}
Subtract \frac{1}{4}y from both sides.
\frac{3}{4}y=\frac{5}{2}
Combine y and -\frac{1}{4}y to get \frac{3}{4}y.
y=\frac{5}{2}\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
y=\frac{5\times 4}{2\times 3}
Multiply \frac{5}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
y=\frac{20}{6}
Do the multiplications in the fraction \frac{5\times 4}{2\times 3}.
y=\frac{10}{3}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}