Solve for y
y\neq \frac{2}{9}
Graph
Share
Copied to clipboard
y=\frac{\frac{2\times 2y}{9y-2}}{9\times \frac{2y}{9y-2}-2}
Express 2\times \frac{2y}{9y-2} as a single fraction.
y=\frac{\frac{2\times 2y}{9y-2}}{\frac{9\times 2y}{9y-2}-2}
Express 9\times \frac{2y}{9y-2} as a single fraction.
y=\frac{\frac{2\times 2y}{9y-2}}{\frac{9\times 2y}{9y-2}-\frac{2\left(9y-2\right)}{9y-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{9y-2}{9y-2}.
y=\frac{\frac{2\times 2y}{9y-2}}{\frac{9\times 2y-2\left(9y-2\right)}{9y-2}}
Since \frac{9\times 2y}{9y-2} and \frac{2\left(9y-2\right)}{9y-2} have the same denominator, subtract them by subtracting their numerators.
y=\frac{\frac{2\times 2y}{9y-2}}{\frac{18y-18y+4}{9y-2}}
Do the multiplications in 9\times 2y-2\left(9y-2\right).
y=\frac{\frac{2\times 2y}{9y-2}}{\frac{4}{9y-2}}
Combine like terms in 18y-18y+4.
y=\frac{2\times 2y\left(9y-2\right)}{\left(9y-2\right)\times 4}
Variable y cannot be equal to \frac{2}{9} since division by zero is not defined. Divide \frac{2\times 2y}{9y-2} by \frac{4}{9y-2} by multiplying \frac{2\times 2y}{9y-2} by the reciprocal of \frac{4}{9y-2}.
y=\frac{y\left(9y-2\right)}{9y-2}
Cancel out 2\times 2 in both numerator and denominator.
y=\frac{9y^{2}-2y}{9y-2}
Use the distributive property to multiply y by 9y-2.
y-\frac{9y^{2}-2y}{9y-2}=0
Subtract \frac{9y^{2}-2y}{9y-2} from both sides.
\frac{y\left(9y-2\right)}{9y-2}-\frac{9y^{2}-2y}{9y-2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{9y-2}{9y-2}.
\frac{y\left(9y-2\right)-\left(9y^{2}-2y\right)}{9y-2}=0
Since \frac{y\left(9y-2\right)}{9y-2} and \frac{9y^{2}-2y}{9y-2} have the same denominator, subtract them by subtracting their numerators.
\frac{9y^{2}-2y-9y^{2}+2y}{9y-2}=0
Do the multiplications in y\left(9y-2\right)-\left(9y^{2}-2y\right).
\frac{0}{9y-2}=0
Combine like terms in 9y^{2}-2y-9y^{2}+2y.
0=0
Variable y cannot be equal to \frac{2}{9} since division by zero is not defined. Multiply both sides of the equation by 9y-2.
y\in \mathrm{R}
This is true for any y.
y\in \mathrm{R}\setminus \frac{2}{9}
Variable y cannot be equal to \frac{2}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}