Solve for x
x=\frac{2\left(4y+25\right)}{y+6}
y\neq -6
Solve for y
y=-\frac{2\left(3x-25\right)}{x-8}
x\neq 8
Graph
Share
Copied to clipboard
y\left(x-8\right)=2+\left(x-8\right)\left(-6\right)
Variable x cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by x-8.
yx-8y=2+\left(x-8\right)\left(-6\right)
Use the distributive property to multiply y by x-8.
yx-8y=2-6x+48
Use the distributive property to multiply x-8 by -6.
yx-8y=50-6x
Add 2 and 48 to get 50.
yx-8y+6x=50
Add 6x to both sides.
yx+6x=50+8y
Add 8y to both sides.
\left(y+6\right)x=50+8y
Combine all terms containing x.
\left(y+6\right)x=8y+50
The equation is in standard form.
\frac{\left(y+6\right)x}{y+6}=\frac{8y+50}{y+6}
Divide both sides by y+6.
x=\frac{8y+50}{y+6}
Dividing by y+6 undoes the multiplication by y+6.
x=\frac{2\left(4y+25\right)}{y+6}
Divide 50+8y by y+6.
x=\frac{2\left(4y+25\right)}{y+6}\text{, }x\neq 8
Variable x cannot be equal to 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}