Solve for y
y=1
Assign y
y≔1
Graph
Share
Copied to clipboard
y=\frac{1}{3}\left(2-\sqrt{7}\right)\left(1-\sqrt{7}-3\right)
Add 1 and 1 to get 2.
y=\frac{1}{3}\left(2-\sqrt{7}\right)\left(-2-\sqrt{7}\right)
Subtract 3 from 1 to get -2.
y=\left(\frac{1}{3}\times 2+\frac{1}{3}\left(-1\right)\sqrt{7}\right)\left(-2-\sqrt{7}\right)
Use the distributive property to multiply \frac{1}{3} by 2-\sqrt{7}.
y=\left(\frac{2}{3}+\frac{1}{3}\left(-1\right)\sqrt{7}\right)\left(-2-\sqrt{7}\right)
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
y=\left(\frac{2}{3}-\frac{1}{3}\sqrt{7}\right)\left(-2-\sqrt{7}\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
y=\frac{2}{3}\left(-2\right)+\frac{2}{3}\left(-1\right)\sqrt{7}-\frac{1}{3}\sqrt{7}\left(-2\right)-\frac{1}{3}\sqrt{7}\left(-1\right)\sqrt{7}
Apply the distributive property by multiplying each term of \frac{2}{3}-\frac{1}{3}\sqrt{7} by each term of -2-\sqrt{7}.
y=\frac{2}{3}\left(-2\right)+\frac{2}{3}\left(-1\right)\sqrt{7}-\frac{1}{3}\sqrt{7}\left(-2\right)-\frac{1}{3}\times 7\left(-1\right)
Multiply \sqrt{7} and \sqrt{7} to get 7.
y=\frac{2\left(-2\right)}{3}+\frac{2}{3}\left(-1\right)\sqrt{7}-\frac{1}{3}\sqrt{7}\left(-2\right)-\frac{1}{3}\times 7\left(-1\right)
Express \frac{2}{3}\left(-2\right) as a single fraction.
y=\frac{-4}{3}+\frac{2}{3}\left(-1\right)\sqrt{7}-\frac{1}{3}\sqrt{7}\left(-2\right)-\frac{1}{3}\times 7\left(-1\right)
Multiply 2 and -2 to get -4.
y=-\frac{4}{3}+\frac{2}{3}\left(-1\right)\sqrt{7}-\frac{1}{3}\sqrt{7}\left(-2\right)-\frac{1}{3}\times 7\left(-1\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
y=-\frac{4}{3}-\frac{2}{3}\sqrt{7}-\frac{1}{3}\sqrt{7}\left(-2\right)-\frac{1}{3}\times 7\left(-1\right)
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
y=-\frac{4}{3}-\frac{2}{3}\sqrt{7}+\frac{-\left(-2\right)}{3}\sqrt{7}-\frac{1}{3}\times 7\left(-1\right)
Express -\frac{1}{3}\left(-2\right) as a single fraction.
y=-\frac{4}{3}-\frac{2}{3}\sqrt{7}+\frac{2}{3}\sqrt{7}-\frac{1}{3}\times 7\left(-1\right)
Multiply -1 and -2 to get 2.
y=-\frac{4}{3}-\frac{1}{3}\times 7\left(-1\right)
Combine -\frac{2}{3}\sqrt{7} and \frac{2}{3}\sqrt{7} to get 0.
y=-\frac{4}{3}+\frac{-7}{3}\left(-1\right)
Express -\frac{1}{3}\times 7 as a single fraction.
y=-\frac{4}{3}-\frac{7}{3}\left(-1\right)
Fraction \frac{-7}{3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
y=-\frac{4}{3}+\frac{7}{3}
Multiply -\frac{7}{3} and -1 to get \frac{7}{3}.
y=\frac{-4+7}{3}
Since -\frac{4}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
y=\frac{3}{3}
Add -4 and 7 to get 3.
y=1
Divide 3 by 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}