Solve for x
\left\{\begin{matrix}x=\frac{-y\cos(z)+1}{\sin(z)}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(z>\frac{\pi n_{2}}{2}\text{ and }z<\frac{\pi n_{2}}{2}+\frac{\pi }{2}\right)\\x\in \mathrm{R}\text{, }&y=\frac{1}{\cos(z)}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }z=\pi n_{1}\end{matrix}\right.
Share
Copied to clipboard
\frac{1}{\cos(z)}-\tan(z)x=y
Swap sides so that all variable terms are on the left hand side.
-\tan(z)x=y-\frac{1}{\cos(z)}
Subtract \frac{1}{\cos(z)} from both sides.
\left(-\tan(z)\right)x=-\frac{1}{\cos(z)}+y
The equation is in standard form.
\frac{\left(-\tan(z)\right)x}{-\tan(z)}=\frac{-\frac{1}{\cos(z)}+y}{-\tan(z)}
Divide both sides by -\tan(z).
x=\frac{-\frac{1}{\cos(z)}+y}{-\tan(z)}
Dividing by -\tan(z) undoes the multiplication by -\tan(z).
x=-\frac{y\cos(z)-1}{\sin(z)}
Divide y-\frac{1}{\cos(z)} by -\tan(z).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}