Solve for x
x\neq -2
y=-1\text{ and }x\neq -2
Solve for y
y=-1
x\neq -2
Graph
Share
Copied to clipboard
y\left(x+2\right)=-x-2
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
yx+2y=-x-2
Use the distributive property to multiply y by x+2.
yx+2y+x=-2
Add x to both sides.
yx+x=-2-2y
Subtract 2y from both sides.
\left(y+1\right)x=-2-2y
Combine all terms containing x.
\left(y+1\right)x=-2y-2
The equation is in standard form.
\frac{\left(y+1\right)x}{y+1}=\frac{-2y-2}{y+1}
Divide both sides by y+1.
x=\frac{-2y-2}{y+1}
Dividing by y+1 undoes the multiplication by y+1.
x=-2
Divide -2-2y by y+1.
x\in \emptyset
Variable x cannot be equal to -2.
y=\frac{-x-2}{x+2}
Factor the expressions that are not already factored in \frac{-x-2}{x+2}.
y=\frac{-\left(x+2\right)}{x+2}
Extract the negative sign in -x-2.
y=-1
Cancel out x+2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}