Solve for x
x=-\frac{10y}{2y+3}
y\neq -\frac{3}{2}
Solve for y
y=-\frac{3x}{2\left(x+5\right)}
x\neq -5
Graph
Share
Copied to clipboard
y\times 2\left(x+5\right)=-3x
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+5\right).
2yx+5y\times 2=-3x
Use the distributive property to multiply y\times 2 by x+5.
2yx+10y=-3x
Multiply 5 and 2 to get 10.
2yx+10y+3x=0
Add 3x to both sides.
2yx+3x=-10y
Subtract 10y from both sides. Anything subtracted from zero gives its negation.
\left(2y+3\right)x=-10y
Combine all terms containing x.
\frac{\left(2y+3\right)x}{2y+3}=-\frac{10y}{2y+3}
Divide both sides by 2y+3.
x=-\frac{10y}{2y+3}
Dividing by 2y+3 undoes the multiplication by 2y+3.
x=-\frac{10y}{2y+3}\text{, }x\neq -5
Variable x cannot be equal to -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}