y+5 = \frac{ -6-10 }{ 7+5 } (x-1
Solve for x
x=\frac{-3y-11}{4}
Solve for y
y=\frac{-4x-11}{3}
Graph
Share
Copied to clipboard
y+5=\frac{-16}{7+5}\left(x-1\right)
Subtract 10 from -6 to get -16.
y+5=\frac{-16}{12}\left(x-1\right)
Add 7 and 5 to get 12.
y+5=-\frac{4}{3}\left(x-1\right)
Reduce the fraction \frac{-16}{12} to lowest terms by extracting and canceling out 4.
y+5=-\frac{4}{3}x+\frac{4}{3}
Use the distributive property to multiply -\frac{4}{3} by x-1.
-\frac{4}{3}x+\frac{4}{3}=y+5
Swap sides so that all variable terms are on the left hand side.
-\frac{4}{3}x=y+5-\frac{4}{3}
Subtract \frac{4}{3} from both sides.
-\frac{4}{3}x=y+\frac{11}{3}
Subtract \frac{4}{3} from 5 to get \frac{11}{3}.
\frac{-\frac{4}{3}x}{-\frac{4}{3}}=\frac{y+\frac{11}{3}}{-\frac{4}{3}}
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{11}{3}}{-\frac{4}{3}}
Dividing by -\frac{4}{3} undoes the multiplication by -\frac{4}{3}.
x=\frac{-3y-11}{4}
Divide y+\frac{11}{3} by -\frac{4}{3} by multiplying y+\frac{11}{3} by the reciprocal of -\frac{4}{3}.
y+5=\frac{-16}{7+5}\left(x-1\right)
Subtract 10 from -6 to get -16.
y+5=\frac{-16}{12}\left(x-1\right)
Add 7 and 5 to get 12.
y+5=-\frac{4}{3}\left(x-1\right)
Reduce the fraction \frac{-16}{12} to lowest terms by extracting and canceling out 4.
y+5=-\frac{4}{3}x+\frac{4}{3}
Use the distributive property to multiply -\frac{4}{3} by x-1.
y=-\frac{4}{3}x+\frac{4}{3}-5
Subtract 5 from both sides.
y=-\frac{4}{3}x-\frac{11}{3}
Subtract 5 from \frac{4}{3} to get -\frac{11}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}