Solve for x
x=\frac{2y}{5}+20
Solve for y
y=\frac{5x}{2}-50
Graph
Share
Copied to clipboard
y+300=2.5x+250
Use the distributive property to multiply 2.5 by x+100.
2.5x+250=y+300
Swap sides so that all variable terms are on the left hand side.
2.5x=y+300-250
Subtract 250 from both sides.
2.5x=y+50
Subtract 250 from 300 to get 50.
\frac{2.5x}{2.5}=\frac{y+50}{2.5}
Divide both sides of the equation by 2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+50}{2.5}
Dividing by 2.5 undoes the multiplication by 2.5.
x=\frac{2y}{5}+20
Divide y+50 by 2.5 by multiplying y+50 by the reciprocal of 2.5.
y+300=2.5x+250
Use the distributive property to multiply 2.5 by x+100.
y=2.5x+250-300
Subtract 300 from both sides.
y=2.5x-50
Subtract 300 from 250 to get -50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}