y+28 \% x=45 \% x
Solve for x
x=\frac{100y}{17}
Solve for y
y=\frac{17x}{100}
Graph
Share
Copied to clipboard
y+\frac{7}{25}x=\frac{45}{100}x
Reduce the fraction \frac{28}{100} to lowest terms by extracting and canceling out 4.
y+\frac{7}{25}x=\frac{9}{20}x
Reduce the fraction \frac{45}{100} to lowest terms by extracting and canceling out 5.
y+\frac{7}{25}x-\frac{9}{20}x=0
Subtract \frac{9}{20}x from both sides.
y-\frac{17}{100}x=0
Combine \frac{7}{25}x and -\frac{9}{20}x to get -\frac{17}{100}x.
-\frac{17}{100}x=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{17}{100}x}{-\frac{17}{100}}=-\frac{y}{-\frac{17}{100}}
Divide both sides of the equation by -\frac{17}{100}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{y}{-\frac{17}{100}}
Dividing by -\frac{17}{100} undoes the multiplication by -\frac{17}{100}.
x=\frac{100y}{17}
Divide -y by -\frac{17}{100} by multiplying -y by the reciprocal of -\frac{17}{100}.
y+\frac{7}{25}x=\frac{45}{100}x
Reduce the fraction \frac{28}{100} to lowest terms by extracting and canceling out 4.
y+\frac{7}{25}x=\frac{9}{20}x
Reduce the fraction \frac{45}{100} to lowest terms by extracting and canceling out 5.
y=\frac{9}{20}x-\frac{7}{25}x
Subtract \frac{7}{25}x from both sides.
y=\frac{17}{100}x
Combine \frac{9}{20}x and -\frac{7}{25}x to get \frac{17}{100}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}