Solve for y
y\geq 44
Graph
Share
Copied to clipboard
y+2.5\left(\frac{1}{\frac{1}{30}}+\frac{-\frac{y}{60}}{\frac{1}{30}}\right)\leq 64
Divide each term of 1-\frac{y}{60} by \frac{1}{30} to get \frac{1}{\frac{1}{30}}+\frac{-\frac{y}{60}}{\frac{1}{30}}.
y+2.5\left(1\times 30+\frac{-\frac{y}{60}}{\frac{1}{30}}\right)\leq 64
Divide 1 by \frac{1}{30} by multiplying 1 by the reciprocal of \frac{1}{30}.
y+2.5\left(30+\frac{-\frac{y}{60}}{\frac{1}{30}}\right)\leq 64
Multiply 1 and 30 to get 30.
y+75+2.5\times \frac{-\frac{y}{60}}{\frac{1}{30}}\leq 64
Use the distributive property to multiply 2.5 by 30+\frac{-\frac{y}{60}}{\frac{1}{30}}.
y+2.5\times \frac{-\frac{y}{60}}{\frac{1}{30}}\leq 64-75
Subtract 75 from both sides.
y+2.5\times \frac{-\frac{y}{60}}{\frac{1}{30}}\leq -11
Subtract 75 from 64 to get -11.
y+2.5\left(-30\right)\times \frac{y}{60}\leq -11
Divide -\frac{y}{60} by \frac{1}{30} to get -30\times \frac{y}{60}.
y-75\times \frac{y}{60}\leq -11
Multiply 2.5 and -30 to get -75.
y+\frac{-75y}{60}\leq -11
Express -75\times \frac{y}{60} as a single fraction.
y-\frac{5}{4}y\leq -11
Divide -75y by 60 to get -\frac{5}{4}y.
-\frac{1}{4}y\leq -11
Combine y and -\frac{5}{4}y to get -\frac{1}{4}y.
y\geq -11\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}. Since -\frac{1}{4} is negative, the inequality direction is changed.
y\geq 44
Multiply -11 and -4 to get 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}